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AB!TrRAcr 

A model of dispersion of a solute migrating in a non-uniform (coordinate-dependent) time-varying medium has been proposed. 
Only two quantities, plate height and velocity of the solute required for the complete model. Derivatives of the variance of the 
zone have been found for the general case of a linear (independent of solute concentration) medium, and for many special cases. 
For the practically important case where the local plate height and the local gradient of the solute velocity are nearly 
coordinate-independent within the zone, a simple model of the evolution of the variance of the zone has been derived. A 
consistent definition of the local plate height has been constructed. It has been shown that the currently accepted method of 
calculation of the variance of the zone is valid only under the certain conditions which were not known before. 

INTRODUCTION 

Chromatographic conditions may change dur- 
ing the analysis (time-variance) and/or along the 
column (non-uniformity), see Table I. 

Many types of temporal and spatial variations 
of chromatographic conditions specific for par- 
ticular chromatographic techniques have been 
analyzed in the literature [3-251. However, no 
unified general theory describing the underlying 
effects of these changes is known. 

Certainly, a specific study is well suited for the 
analyses of particular circumstances of a given 
technique. It can take into account all the details 
of the technique. A general theory, on the other 
hand, allows to see the broad picture of many 
separation techniques and provide the answers 
applicable to all of them. It can also serve as a 
framework and a guide for the more detailed 
studies. For instance, it has been recently shown 
[26] that, as long as a separation is linear (con- 
centration independent) and ideal (infinitely 

short injection time, etc.), no focusing [15-261 
can improve chromatographic resolution. If, on 
the other hand, the conditions were not ideal 
(which, in practice, is always the case) the 
focusing can recover [26] the losses in resolution. 
These conclusions were based on the theory 
described in this paper. They can guide a study 
of focusing in many separation techniques. 

The purpose of this paper is to develop the 
foundation for the kinetic theory of separation in 
an arbitrary linear medium (time-varying and/or 
non-uniform). The study of the evolution of the 
variance of the zone is viewed as a comer stone 
for such theory. This paper is part 2 in the series 
dedicated to that study. 

In the first part of the series [2], the theory for 
an arbitrary time-invariant medium (Table I), 
has been developed. The theory was derived 
from the basic principles of dispersion of migrat- 
ing solutes. 

In this paper, this theory has been further 
extended. Although the theory covers the entire 
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TABLE I 
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CLASSIFICATION OF CHROMATOGRAPHIC MEDIA BY THE TYPES OF CHANGES 

Media Changes Ref. Examples 

Time-invariant uniform 
Tie-invariant non-uniform 

Time-varying uniform 

Time-varying non-uniform 

Nochanges 
Changes in distance 

only 
Changes in time 

only 
Changes in time and 

distance 

1” 
2” 

3-12 

13-25 

Isocratic LC, isothermal GC with low-pressure drops 
Supercritical fluid chromatography (SFC), isoelectric 

focusing, isothermal GC 
Programmed-temperature GC with low-pressure drops 

Programmed temperature GC, chromathermography, 
gradient elution LC, programmed-pressure SFC 

“And references cited therein. 

Table I, its main focus has been the most 
complicated case of the time-varying non-uni- 
form media. 

Model 
The model of a mass-conservative migration 

and dispersion of a solute in a time-varying non- 
uniform medium can be represented by the 
partial differential equation [2] 

am 
- -CL (Deffm) - Y$ (urn) X- ax2 

where x and s are, respectively, distance and 
time coordinates for the medium, m is specify 
muss (per unit length) of the solute, Deff is local 
efiective diflusivity [27] of the solute, and u is 
local ve2ocity of the solute. 

In this study, the scope of the model is limited 
by the following assumptions. 

(Cl) Linearity of the medium. Quantities 

D,, = &(x, r) and u = U(X, S) do not depend on 
m. 

In addition, D,, is not negative, and at any 
time, both D,, and u are bounded within any 
bounded interval of x while their gradients are 
bounded when x approaches infinity. More speci- 
fically: 

(C2) 0 i s < 00 implies: 0 c D,, < CD and ]uI< 
M when ]x]c~; laD,,lax( < CQ and lauldxl ecu 
when x+ f~. 

Finally, m is not negative, and the second 
moment of the zone is bounded at any time, i.e. 

(C3) m = m(x, s) B 0, and I_“_ x2m dx < 03 
when Ods<m. 

Of these conditions, only Cl represents the 
practically meaningful limitation. It means, e.g., 
that the results of this theory can not be applied 
to many cases of preparative chromatography 
[14] where frequently, due to the column over- 
loading, the conditions are substantially non- 
linear. In the analytical chromatography, how- 
ever, the overloading is typically avoided, and 
the results of the theory are valid. Also, only this 
condition is substantially different from its coun- 
terpart in ref. 2 reflecting the much broader 
scope of this treatment. Whereas in ref. 2, the 
quantities D,, and u were only allowed to be 
functions of the distance, X, (time-invariunt non- 
uniformity), here they can depend on the time, S, 
as well (medium can be time-varying and/or 
non-uniform). 

Conditions in the collections C2 and C3 are 
either the statements of the physically existing 
facts (non-negative mass and effective difkivi- 
ty), or of the limitations which always exist in 
practice. Interpretation of all these conditions is 
obvious with the one possible exception of the 
bounded second moment of the zone. The latter 
means that the width of the zone expressed via 
the standard deviation of the zone is required to 
be bounded. A simple example of a zone with 
the non-bounded variance (see Appendix 1) is of 
certain theoretical interest. 

THEORY 

Many derivations in this section are similar to 
those in ref. 2. However, the possibility of the 
changes of the properties of the medium in time 
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(excluded in ref. 2) requires special attention. As 
before [2], a distinction between an arbitrary 
coordinate x in the medium and the coordinate, 
z, of the center of mass of a migrating zone is 
carefully maintained. Additionally, here, similar 
distinction between an arbitrary time variable s 
and the migration time of the zone, t (the time 
when the center of mass of the zone is at z), is 
recognized. 

Implications of conditions Cl-C3 - 
Conditions C3 imply that the amount, M, of 

the solute in the zone is bounded. Additionally, 
’ due to the mass conservative nature of the eqn. 

1, M is constant [2]. In other words, 

I 

m 
M= m dx = constant < co (2) --m 

The second of the conditions C3 also implies that 
at any instant, s = t, of time 

1 m 
2=2(t)=% __xm(x,t)dxCm 

I (3) 

i.e. the coordinate, z, of the center of mass of 
the zone is bounded as well. If necessary, the 
function t = z(t) can be inverted” to t = t(z). 
Relations z = z(t) and t = t(z) can be used to 
transform any function of 2 into a function of t 
and vice versa. Finally, together, eqns. 2 and 3 
imply a known relation 

I 

cc 
_m(z-x)mdx=O (4) 

Modified model 
Effective diffusivity, Deff, in eqn. 1 represents 

the rate of diffusion of a solute per unit of time 
[27] (temporal rate of diffusion). Better known in 
chromatography is the rate of dispersion of the 
zone per unit of its displacement in the column 
(spatial rate of dispersion). In a uniform time- 
invariant chromatography that rate known as a 

’ If the velocity of the zone reverses direction, the relation 
t(z) can become multi-valued. 

column plate height, relates to the effective 
diffusivity as [27] 

(5) 

In an arbitrary medium, the quantity H in eqn. 5, 
represents the local rate of dispersion of the 
solute per unit of its displacement in the 
medium, and, therefore, can be identified with 
the local plate height in the medium [2] (see 
Discussion for the direct definition of the local 
plate height). Substitution of eqn. 5 in eqn. 1 
yields 

am -=- 
as : * $ (Hum) - $ (urn) 

This model describes the mass-conservative mi- 
gration of a zone directly through the two best 
known basic concepts in chromatography: a 
column plate height and velocity of a solute. 

Velocity of the zone 
In a non-uniform medium, different parts of 

the zone can migrate with different velocities. 
Nevertheless, the concept of the single (aggre- 
gate) velocity, ii, of the zone as a whole can be 
defined. If the location of the zone is identified 
with the coordinate, z, eqn. 3, of its center of 
mass, and t is the time required for the zone to 
migrate to z then the velocity of the zone 
becomes 

dz 
i.T=x (7) 

It can be shown (see Appendix 2) that 

(8) 

Evolution of the spatial variance of the zone 
The changes in the spatial variance 

c2=- b 
I 
_D, (x - z)‘m dx 

of the zone can be described by the derivative 
dcr2/dz [2]. It can be shown (see Appendix 3) 
that 
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=I?+& 

where 

(11) 

is the zonal plate height, i.e. the (hggregate) 
plate height for the entire zone [2]. 

Special cases 
So far, no limits to the degree of the variation 

of H and u in distance or time were imposed. 
For example, the gradient of velocity of the 
solute was allowed to change its sign within the 
zone. That can significantly distort the shape of 
the zone and even split a zone of a pure solute in 
several pockets. In analytical chromatography, 
however, efforts are made to avoid such ex- 
tremes and keep the variation of the gradients 

and g,, = g,(x, S) = $ 

(12) 

within the zone at the low level. Under such 
conditions, eqn. 10 can be simplified. 

(C4) Moderate media. Within the zone located 
at z, the plate height and the solute velocity are 
linear functions of x: 

H(x, t(z)) = H(z, t(z)) + g&z, r(z))(x - z) 9 

for all x where m(x, t(z)) # 0 ; (13) 

U(& t(z)) = u(z, t(z)) + g,(z, t(z))(r - z), 

for all x where m(x, t(z)) # 0 (14) 

For a moderate medium, eqn. 10 can be re- 
written (see Appendix 4) as 

da2 
x=H+ 

do2 
dz= 

H + 2U2& 
U (15) 

(Cs) Partially moderate media. Within the 
zone located at z, the solute velocity is linear 
functions of X, eqn. 14 (while the plate height 
can change arbitrarily). 
In this case= (see Appendix 4) 

da2 202 au 
~=A+-.~ or 

du2 
T’E? + 

2U2& 
U U 

(16) 

(C6) Smooth media (a stronger case of the 
moderate media). Within the zone located at z, 
the solute velocity is a linear function of x, eqn. 
14, while the plate height does not depend on x: 

H(x, t(z)) = H(z, t(z)) 

for all x where m(x, t(z) # 0 (17) 

This is the simplest of the time-varying non- 
uniform media (see Discussion). Due to g, = 0, 
eqn. 15 becomes 

da2 2~~ au 
-=H+u.z or 

da2 2u2g 

dz 
-+I++ 
dz 

(18) 

(C7) Uniform media. Within the zone located 
at z, the plate height and the solute velocity do 
not depend on ,x, i.e. along with eqn. 17, one 
has: 

r& t(z)) = u(z, t(z)) 

for all x where m(x, t(z)) f 0 . 

Eqns. 15 and 18 become 

(19) 

(20) 

Notice, that this familiar relation [28,29] remains 
valid even if the medium changes in time (time- 
variance). 

(C8) Moderate time-invariant media. During 
the passage of the center of mass of the zone 
through the coordinate z, the medium remains 
moderate, C4, and time-invariant. The latter 
means that 

a Eqn. 16 was instrumental for the derivations in ref. 26. 
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aH 
as s=r(z) 

=0 and $ = =0 
s t(r) 

for all x where m(x, t(z)) # 0 . (21) 

As partial derivatives of H and u over s vanish 
due to this condition, the partial derivatives of 
these quantities over x become the same as the 
full derivatives over X. Furthermore, since only 
x = z is considered in eqn. 15 (see notations in 
Appendix 4), the derivatives over x are the same 
as the derivatives over z. Eqn. 15 becomes 

da2 2a2 du -.- x=H+ u dz 

The quantity 

a2 72=_z 
U 

(22) 

(23) 

can be referred to as a temporal variance of the 
tone’. After the substitution of eqn. 23 into eqn. 
22, the latter becomes (see Appendix 5) 

’ H r2 du dH 
(24) 

Significance of eqns. 22 and 24 is discussed in the 
next section. 

(C9) Smooth time-invariant media [2]. During 
the passage of the center of mass of the zone 
through the coordinate z, the medium remains 
smooth, C6, and time-invariant, eqn. 21. 

This case has been studied in ref. 2. The same 
arguments which led from eqn. 15 to eqns. 22 
and 24, lead [2] to 

da2 2a2 du -=H+-.- 
dz u dz’ 

dT2 H -=- 
dt u2 (26) 

o When t’(z) >> T’ (large values of z), the temporal variance 
of the zone, eqn. 23, is a good approximation to the 
temporal variances of the solute mass-jlow or the concen- 
tration-time curve at 2 [30-341. 

* Eqn. 28 was the basis for the formulation of the generalized 
conclusion in ref. 26. 

The latter allows to calculate the net temporal 
variance of the zone at any 2 as 

72= dT2= I I Hdz 

U2 

Other forms of eqns. 26 and 27 (see Discussion) 

(27) 

were known before [35-381. 
(ClO) Gaussian zone. 

is a Gaussian function of x when the zone is at z. 
For the Gaussian zone, eqn. 10 can be rewritten 
(see Appendix 6) as* 

do2 2a2 
-=A++U 
dz 

where 

is the average gradient of velocity of the solute in 
the zone. 

This concludes the analysis of the special 
cases. Notice the structural similarity of eqns. 15 
and 22, and eqns. 16, 18, 25 and 28. It is also 
worth mentioning that the special cases C4-C9 
prescribe their conditions only in the vicinity of 
the certain coordinate z, and only at the time 
when the zone is there. In that sense, the 
conditions can be viewed as the zonal and the 
instantaneous ones. Obviously, the results are 
valid when the conditions are broader. For 
example, a certain region in the medium can be 
always smooth; or, at a given time, the entire 
medium can be smooth; and, finally, the entire 
medium can be always smooth. 

DISCUSSION 

The theory developed in the previous section 
is founded on the two basic principles of chro- 
matographic separation in any medium: migra- 
tion and dispersion of the zones. The small 
number of elements in the foundation of the 
theory assures broad application of its results 
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[2,26]. Some implications of the theory are 
discussed below. 

Implications of the time-variance 
The time-variance enters into the relations for 

dcr2/dz (see Theory) in a subtle way. For in- 
stance, integration in eqn. 10 is done only over 
the distance variable x with the tixed s, and the 
equation itself is very similar to its time-invariant 
counterpart [2]. In the equations describing the 
special cases, variable t is even less visible (all 
quantities u*, H, I?, u, g,, g,, & in these 
equations are functions of the single variable z). 
Nevertheless, the influence of the time-variance 
is significant. 

First of all, full derivatives over dz in the 
time-invariant equations are replaced with par- 
tial derivatives over &X in their time-varying 
counterparts. What is more, the time-varying 
equations are more complex because parameters 
H, u, etc. in these equations are not as directly 
related to their counterparts in the model eqn. 6, 
as they are in a time-invariant medium. 

Consider, e.g., the plate height in the time- 
invariant eqns. 22, 24-27. Notice, that the plate 
height in eqn. 6 is a function H = H(X) of a single 
variable x [2]. Substitution of x = t results in the 
function H = H(z) for all eqns. 22, 24-27. In 
other words, quantity H eqns. 22, 24-27 is the 
same function as the one in eqn. 6. In the time- 
varying eqns. 15, 16, 18 and 20, the plate height 
is also a function of the single variable z, but 
now it is defined as H = H(z, t(z)) (see Appendix 
4). To derive H(z, t(z)), the function t = t(z) (see 
comments to eqn. 3) must be known. To find 
t = t(z), notice that ii = u(z, t) for all eqns. 15, 
16, 18 and 20 (see Appendix 4). Therefore, eqn. 
7 becomes 

$ = u(z, t) 

where the function U(X, s) is known from eqn. 6. 
The function t = t(z) can be found by solving 
eqn. 29 for z = z(t) and inverting the latter 
relation to get t = t(z), or by solving equation 

dt 1 
dz=- u(z, t) 

directly for t = t(z). These manipulations are not 

as trivial (see Appendix 7) as the substitution 
x = z which is valid only for the time-invariant 
media. 

Comparison of new and previously known 
results 

It is important that the previously known 
special cases follow from the broader theory. If 
that does not occur, the sources of the inconsis- 
tency must be identified. 

Notice that eqn. 10 developed here for an 
arbitrary medium has its narrower precedent in 
the theory developed before [2] for the time- 
invariant medium. It has also been shown above 
that the new and broader relations such as eqns. 
16, 18 and 28 converge to the previously known 
[2] eqn. 25 while eqn. 24 converges to the 
previously known [2] eqn. 26 when the appropri- 
ate conditions [2] are reproduced. 

Eqn. 26 was also previously known [35-381 in 
its approximate form 

H.z. 73=-il 
I 

l.4; 
(31) 

where Hi and ui were, respectively, the plate 
height and solute velocity in a short column 
segment zi, and rj! was the contribution of that 
segment to the total TV. The latter was calculated 
as 

ui 

Previously [35-381, eqn. 32 was viewed as the 
self-evident rule of addition of the small contri- 
butions, of, to the total r2 in any time-invariant 
medium. The theory developed in the previous 
section provides an example of a time-invariant 
medium where the rule is not valid. Indeed, 
eqns. 31 and 32 are approximations of eqns. 26 
and 27. As eqn. 24 indicates, eqns. 26 and 27 are 
not valid when dHldz #O. Invalid as well 
become their respective approximations eqns. 31 
and 32. Discovery of the unknown limitations of 
the currently accepted techniques is one of the 
important results of the theory. 

As the discussion in ref. 2 indicates, previous 
theories can justify eqns. 31 and 32 for the 
time-invariant medium which has nearly constant 
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solute velocity and plate height within the zone. 
The discussion in the previous paragraph, on the 
other hand, justifies eqns. 31 and 32 for the 
much broader class of the time-invariant 
medium, the one where the solute velocity does 
not have to be neurZy constant within the zone. In 
other words, the theory developed in the previ- 
ous section, not only reveals the limitations of 
the previously accepted techniques but also 
provides the less restrictive justifications for such 
techniques than the previous theories do. 

For the time-invariant smooth media, all eqns. 
25-27, 31 and 32 are valid. However, eqns. 31 
and 32 still remain approximations of the exact 
and mathematically more manageable eqns. 26 
and 27 which were deduced from eqn. 25. 
Therefore, eqn. 25 seems to be a better alter- 
native as a starting point in the analysis of 
chromatography in a smooth, time-invariant 
medium. Eqn. 25 itself is a special case of eqn. 
18 virhich describes the variance of the zone in 
any (not necessarily time-invariant) smooth 
medium and provides the most consistent start- 
ing point for the analysis of such medium”. The 
use of the smooth model, C6, and eqn. 18 for the 
analysis of many practical cases of a non-uniform 
chromatography can be justified by the follow- 
ing. --. 

In many cases of a non-uniform chromatog- 
raphy [13-25, 37-401 the local plate height, H, is 
a much weaker function of a distance than the 
local solute velocity, u, is. Also, typically, in 
chromatography with a reasonably high ef- 
ficiency (more than a hundred of plates), the 
largest portion of the migration of the zones 
from the inlet to the outlet takes place under the 
conditions where the widths the zones are 

ofn much narrower than the colum 
‘ii 

ength. As a 

2 

a Previously [26], eqn. 18 was introduced without the deriva- 
tion. 

*This may not be true in the vicinity of joints of columns 
with inlets, detectors, retention gaps, etc. where significant 
upsets of velocity of solutes and/or plate height can occur 
within the zone. The non-uniformity can also be severe in 
case of the thick-film GC with the vacuum outlet [41]. 
Analysis of the extremes of the non-uniformity is also 
within the scope of this theory, eqn. 10. However, it is 
beyond the scope of this paper. 

result, typically, H and the gradient of u do not 
change significantly within the zone’. Finally, 
eqn. 18 is the simplest among the equations 
describing the time-varying non-uniform 
medium. (Eqn. 15 is more compli$ed, eqns. 16 
and 28 require zonal parameters H and ii instead 
of local H and u, other special cases deal only 
with the time-invariant medium.) 

Local plate height 
The concept of the plate height is one of the 

key concepts in chromatography. Previously 
known definitions of the local plate height 
[11,27,29,35] in a non-uniform chromatography 
have internal inconsistencies [ll]. A new defini- 
tion, free from the known inconsistencies is 
constructed below. 

Notice, that in eqn. 5, the local plate height, 
H, was introduced via the local effective dif- 
fusivity, Deff , and the local solute velocity. Eqn. 
5 for the time-invariant uniform [27] and non- 
uniform [2] medium was known before. 

Typically, in chromatography, H is a better 
known quantity than D,,. A direct definition of 
H which does not require a knowledge of D,, 
can be (see Appendix 8 and ref. 2): 

CONCLUSIONS 

The plate height and the solute velocity based 
model of a chromatographic medium has been 
proposed. Eqn. 10 describing evolution of the 
variance of the zone in any linear medium 
(possibly time-varying and/or non-uniform), and 
many special cases of that equation have been 
derived. When the medium is smooth (local plate 
height and gradient of the solute velocity are 
nearly coordinate-independent within the zone), 
the evolution of the variance of the zone is 
governed by the newly derived ordinary linear 
differential equation, eqn. 18, which can be used 
as the simplified model for the majority of the 
known non-uniform time-varying separation 
techniques. 

Among other important results, it has been 
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shown that the previously accepted rule of calcu- 
lation of the temporal variance of the zone in an 
arbitrary non-uniform time-invariant medium, 
eqn. 32, is valid only if the medium is smooth. 
Also a definition, eqn. 33, of the local plate 
height free from the previously known inconsis- 
tencies has been constructed. 
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APPENDIX 

1. An example of the zone with unbounded 
variance 

A zone which at a certain time, t, has specific 
mass 

m = m(x, t) = I mo9 1x1 s 1 

m,lxI-3, Ixl> 1 
where m, is a constant, has bounded zeroth 
moment (the total amount of solute), M, and 
bounded first moment (the center of mass of the 
zone), 2. Its half-height width, w, is also 
bounded, but its second central moment (the 
variance of the zone), g2, is infinite. Indeed, 

M= mdx=3m,, 

w=2(1+ &)=4.52, 

In the second integral in the right-hand side of 
the last expression, the velocity, ii = dzldt, of 
the zone is not a function of x, and can be moved 
outside of the integral. The integral then van- 
ishes due to the eqn. 4. The entire expression 
becomes 

The integral in the right-hand side of this expres- 
sion can be replaced [2] with 

I 
m 

I 
m 

Humdx+2 
-09 _-m (x - z)u dx 

which yields 

I__; (x - z)um d&t 

Due to eqn. 7, one has du2/dz = 2-l - (drr2/dt) 
which, due to the previous expression, can be 
re-written as eqn. 10. 

4. Derivation of du2/dz for the moderate 
medium 

Under the condition C4, eqn. 8 becomes 

2. Derivation of the velocity of the zone 
Due to eqn. 3 and the constancy of M one has 

The integral in the right-hand side of this expres- 
sion can be replaced [2] with j’_“m urn dx yielding 
eqn. 8. 

3. Derivation of du2/dz 
Due to the definition eqn. 9, one has: 

+ &(Z, t(z)> - 
M I 

_m (x - z)m dx = u(z, t(z)) 

The second integral in that expression vanished 
due to the eqn. 4. The result indicates that the 
zone velocity becomes the same as the local 
velocity of the center of mass of the zone. That 
and condition C4 imply that eqn. 10 can be 
rewritten as 

da2 1 
dz=uM 

* (u + (x - z)g,)m dx 
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where 

H = qz, t(z)) , u = u(z, t(z)) , 

g, = gH(z, t(z)) = aHc;xtiz” ( ) 

X=* 

g, = g,(z, t(z)) = au(~xt~z) 1 
X=Z 

All these quantities are not functions of x. 
Taking that into account along with the eqn. 4, 
one finally has: 

=H+;gU(2+gH) 

If this entire derivation was applied only to the 
integral term in the right-hand side of eqn. 10, 
the result would be eqn. 16. 

5. Derivation of dr2 ldz for the time-invariant 
moderate medium 

From eqn. 23, one has 

~LL($)=f(d$Z$.!K) 

After the replacement of da2/dz in the right- 
hand side of this expression with eqn. 22 one 
has: 

du dH H+$z.x 

H r2 du dH .-.- 
=?+; dz dz 

U 

6. Derivation of da2fdz for a Gaussian zone 
For a Gaussian zone, condition ClO, am/ax = 

.-[(x - z)lu2]m. That allows to rewrite the sec- 
ond integral in the right-hand side of eqn. 10 as 

1-1 (x - z)um dx = 7.r2 1-L u dm 

Due to the combination of conditions C2 and C3 
which force u(m, s) - m(m, s) - m(-03, s) = 0 for 
any s, the term - (um)jY,m vanishes yielding 

That along with the notations eqn. 12 allows to 
rewrite eqn. 10 as eqn. 28. 

7. Example derivation of z(t) 
A focusing by the constant negative gradient 

of a magnitude g, which travels along the column 
with the constant speed [16,26] can be provided 
by the velocity function u = u(x, s) = u, + US - 
g,x where initial velocity, u,, and local accelera- 
tion, a, are constants. Eqn. 29 becomes dzldt = 
u, + at - g,z. Its solution for z(0) is 

z = s!f (1 - e-80t) + $ 
0 0 

Inversion of this expression is not simple. How- 
ever, in the special case, the expression can be 
significantly simplified. Notice that regardless of 
the initial velocity, u,, the zone asymptotically 
approaches velocity u, =a/g,. If u, = uc, the 
previous expression for z becomes z = u,t, i.e. 
the zone migrates with the constant velocity u,. 
Assumption u, = u, also simplifies eqn. 18. After 
the substitution u = u, = a/g, and g, = -g,, eqn. 
18 becomes da2/dz = H - 2a2gzla where both 
g, and a are constants. 

8. Definition of the local plate height 
A non-uniform medium can be nearly uniform 

within a small segment of its length. Indeed, 
other than at the points of discontinuity of the 
properties of the medium, there always exist 
such a short segment, AX, in the path of the zone 
that the medium is nearly uniform within Ax. If 
the largest fraction of the zone is located within 
Ax then the migration of the zone in the vicinity 
of &X is almost unaffected by the non-uniformity 
of the medium. The latter conditions are met 
when a2+0. Further, as m is not negative, it 
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follows from the eqn. 9 that for a non-zero 
amount of the solute in the zone, CT*+ 0 implies 
m(x, t(z))-* MS@ - t) where 6(x - z) is a 
Dirac’s delta-function. Substitution of the last 
implication in eqns. 8 and 10 yields C = u and 
da*/dz = H indicating that H can be measured 
as prescribed by eqn. 33. 

11 

12 

13 

14 

15 

J. Yi. Zhang, G.M. Wang and R. Qian, 1. Chromatogr., 
521 (1990) 71-87. 
L.H. Wright and J.F. Walling, 1. Chromatogr., 540 (1991) 
311-322. 

SYMBOLS 

M. Novotny, W. Bertsch and A. Zlatkis, J. Chromatogr., 
61 (1971) 17-28. 
M.Z. El Fallah and G. Guiochon, Anal. Chem., 63 
(1991) 859-867. 
A.A. Zhukhovitskii, O.V. Zolotareva, V.A. Sokolov and 
N.M. Turkel’taub, Dokl. Akad. Nauk SSSR, 77 (1952) 
435. 

D eff local effective diffusivity in the medium 
(length*/time) 

gH 

gl4 

local gradient of plate height 
local gradient of velocity of the solute 

(time-‘) 
average 

gr 
adient of velocity in the zone 

(time- ) 
H 
R 
M 
m 
S 

t 

U 

ii 

x 

Z 

local plate height in the medium (length) 
plate height for the entire zone (length) 
total mass of the solute in the zone (mass) 
specific mass of a solute (mass/length) 
time coordinate (time) 
migration time of the zone (time) 
local velocity of a solute (length/time) 
velocity of the zone (length/time) 
distance coordinate (length) 
coordinate of the center of mass of the zone 

CT* 

T2 

(length) 
spatial variance of the zone (length*) 
temporal variance of the zone (time2) 
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